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ABSTRACT 

Trial-to-trial changes in the proportion of human subjects 

predicting the occurrence of one of two events in a complex sequence 

of binary events (probability learning) are analyzed in terms of 

several simple models.    The direction of change predicted by linear- 

operator reinforcement models (Estes, Bush and Hosteller) is wrong on 

about 75% of the trials.    A no-learning model, a time-dependent decay 

model, and a cycle-dependent decay model are used to provide some 

insight into the nature of probability learning. 

Some suboptimal procedures for estimating parameters of 

stochastic processes are compared.    The method of minimum absolute error 

is recommended as being very useful. "V" 
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M1CR0STRUCTURE OF GUESS PROCESSES 

Masanao Toda 

A couple of years ago. Professor Moste Her gave a presidential address 

to the Psychometric Society entitled "The mystery of the missing corpus" 

(Mosteller» 1958),     In a slightly different context^ I sometimes feel about 

my own research on guess process that  I am trying to solve a like mystery 

called "The Case of a Deceptive Beauty.'     But  unlike Sherlock Holmes or 

Perry Mason, I am no genius as a detective      I  am just a plain, ordinary man 

with dogged perseverence, and I have just succeeded in getting a confession 

from my suspect,, that deceptive beautyj known as guess process, also as 

probability learning.    And I am still wondering,  whether this confession 

might be another deception,  and I am ]ust making a fool of myself by 

triumphantly talking about  this confession      Anyway,  the confession is not 

yet consistentj and I am not yet at  the stage of  getting a successful trial 

However, here is one thing about which I  can ta^ with complete 

confidence i  this deceptive beauty,   probat ility  learning,   has a very 

complicated character, no matter how plainly simple she may appear;, and no 

matter how many psychologists are honoring her simplicity by sonnets  in the 

form of simple stochastic learning theories 

My plan for today's talk on my unfinished detective story is like this 

First ;   I will introduce her to you formally with appropriate courtesy , 
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second, I will tell you something about her shadowy inside life when she is 

out of sight, and then, finally, I will ta^k something about police science 

or parameter estimation 

I think most of you are familiar with guessing experiment . or two armed 

bandit experiments So, I will show ycu just an example of *he experimer ai 

procedure Imagine a deck of, say, piaying cards The experimenter show.-> 

these cards one by one from the top of the deck Now, •'"he rrxperiment ai Ss 

task is to predict the color of each card each time before The card is 

shown. This is iust a kind of game,, and Ss are encouraged TO maximize the 

number of correct predictions That s a*: Suppose the totai number of Ss 

is N Suppose the number of Ss who predicted black" on 'nai A. IS 

Then I call n^/N the guessing quotient with respect to "biack1 response on 

trial < By plotting these guessing quotients on ail the triads we obtain 

the guessing curve You will see examples of guessing curves in Figures 1, 

2- and 3 Please look at the Figure 3 firsT The shor* lines attached 

to the top and the bottom lines of -he graph represent the arrangement of 

the cards used in the experiment Ther^ a»e twc short lines a*~ached to the 

leftmost part of the top line, which are then followed by a blank And 

wherever there is a blank on the top line ycu will find a short line on 

the bottom line These three short lines then mean tha* The -irs* two ards 

were blue, and the third was red Sc ycu wi»l see that the arrangement ot 

the cards, or the sequence of events, used her** is a random sequence w„th 

probability n(6l » „75 for obtaining blue Now the ordinate of this graph 

shows the values of guessing quotients with respect ~o prediction of b*ue 

Three groups of Ss were given this same sequence So the *hree points 

corresponding to the first trial indicate that in each group about bO or 

601 of the Ss predicted blue as the coior of the first card 

5 



After Ss made  their respor&esr  they were  shown the first  ;ärd    which was 

blue, and each of  them recorded his prediction  and "he color  of the  card in 

the    answer sheet,  and then they proceeded to predicting ^he ccior of vht 

next  cardu 

Now j   I think  some of  you who are  familiar with guessing exper.menrs 

might be puzzled by  this  figure.     Guessing curves you find  in psycho-^gi-a. 

joumais do not  usually  look nke this.     Usually,, they start off at   ajDcu: 

0,5,   and smoothly and monotomcally approach a certain asymptore      But here 

in  Figure  3,  there  is nothing smooth and nothing monotom;.     This  remir>ds 

me  of a joke      Mona Liza had a tco*nache    and   Leonardo had an  ideal  mooe   „ 

Now you can pu'il out  all   the teeth of the original guessing curves  liKe 

those presented in  Figure   3f by  averaging guessing quotients over each 

block of ten or more trials.    And this  is what   usually  is done by 

psychological artists,  o;   dentists    and as a result we gpt  mystenousiy 

simple and smooth guess.it g curves,,     Averaging  across bxorks of  ♦rials   is, 

of  course.,  a completely  legitimate procedure  if  these street-res  of  the 

curves are  ]ust  outcomes  of  rardom fluctuations,     But  random  fluctuations 

cannot  be  reproduced so regularly as occurs   :n  Figure  3  as well  as  in 

Figures   1 and 2, 

However    i  rouid hardly do  jus*ice to the beauty of    he a^eragtd 

guessing curves   if  I   ^aid   IT   .S  a^.:  due  *o the piastic surgery  of  a^f.rag^rg 

There  is a mvsterv something beyond ihar .   and   it   is the   -alue of rhe 

asymptcte  *o which  smooth  averaged guessing curve?  approach       As  far as 

experiment   is   :onducTed  under ordinary conditions,   i.e.     when Ss are   jut^ 

guessing and not  making money  :n propcir^Jcn  to  ♦he number of  correc • 

predictions, the  asymptotic value  ct  P'8!       the guessing quc'ien-  wi'-h 

respect  tc r^e e^ent    B, xs  ^iTiCS*"  always approximately equaj   to u'ßj 

no matter  what     he  value     MB'       inis effect   :& called probat:-.iry matcni.-g 



This result  has puzzled many people    since to rna^ch response 

probability with event probability is  «o obviously non optimal   it Ss dre 

maximizing the number of correct predict;ors  and if  The>  know the evert 

sequence  is random      Suppose w'B1   >   l       n'ß!       Then,  S  can  ger  n{8)   as The 

mean number of correct predictions  if  he a".ways  predicted blve      But   if he 

matches his prediction probability with   P B)   :hen his mean number of bits 

reduces to n2  ■»•   !'       ir!2   <     v      Equality bcids  cniy for   >•  *       * 

The  reactions  ^o this effect  among psychoicgists whc were   interej-ted 

in this process were not  unanimous      A group of pet-pie    including myself. 

were rather deeply annoyed by this  apparent  irrationality ,  ard  attempted to 

prove either or both of the following  two hypotheses       (1'  Ss  were not 

simply maximizing ^he plain,   unweighted *otai number of correct  predictions, 

(2)    Ss were not perceiving the event   sequence  a?  random      One of my Ss told 

me  that  he could not  resist  the temptation cf  trying fc hit   the  ]ackpot by 

predicting a very  infrequent event       If  this k;nd of  uneven  utilities  for 

more  frequent  and less frequent events   is responsible  f^r probability 

matching,  we should be able to get  rid of probabi.iry matching by inducing 

an even utility distribution by  means   of  paying Ss money   in  proportion  to 

the correct predictions.     This hypothesis has teen  vpry well  connrmed by 

a couple of experiments done by different   people      Obviously     Ss preferred 

real pennies to  imaginary  jackpots 

•pROCr      v   >   1       n      Fut   '/2  ♦   t        r.   Ö '/2 Then we have 
r?  ♦   (f       nl2   »   ! J/2  ♦  el2  *   '.f/2       E>

2
   *   '/? ♦  ?r2     for the mean number 

of hits per trial under the probabiii-y matching strategy       On  the other 
hand,  the mean number of hits per trial  under the pure  s*ra'egy  of 
predicting 8 all  the time  is *  -■   '/2 -r  c       The   .a*ter   is  grearer »han  the 
former since 2U       (n2 ♦   (I       TT)

21
)   =   '   .   ?( 4e?   »  ?( 2t 0 



The reaction of another group of people was a kind ci  artistic 

inspiration      As a consequenr.e,  we are now able to appreciate  a ccup-e 

of masterpieces of mathemanccii arr 

The greatest of all  isv  according  to my cpimcn,,  Estes    model 

vEstes^  1959) s  since he uses or.iy two parameters to descri^e  guessing 

curves      I am using wrong words      He calls  his rnode-L a theory    and he  is 

not descnbirg^ but  predic'.ing j   since a  theory should predict „  not   descrite 

You may wonder if  it   is possible to predict withcut  describing.     But Estes 

did it, and  I will  show you how this stunt   was  dcre      His  basic  assumption 

will be stated  like  this 

p -   ,   »   Xp    ♦ o • (?       A'     Ö  ^   A ^   T , r4,* 'A, -C 

His original  expression   (Estes,   1950)   is  different   from thisf but  these  arp 

equivalent       Now,   p    is  the probability  of predicting a  specified event  on 

trial .Co     a    is  a function taking the value      or 0  according as  the 

specified event  has  occurred cr roc  on ^^ial i.    respectively,      In ps;>:hü.cgy 

this type of  theory belongs  to  a class of reinforcement   Theories,   since  the 

event  obtained on  trial i reinforres  the  response oriented to  that 

particular event,       X   is a parameter,   and  another parameter   in  this  model 

..s obviously  Pj 

Now »his equation has a form directly applicable *o individual g-esSiCg 

quotients and it should te true, if a re mf orcemenv theory :f this type 5 

to have any validity at all, that individual guessing quotien* in genera, 

increases when the specified response is reinforced and decreases when the 

altemaTive response 's reinforced I tested this assumption with my daca 

and the assumption was confirmed only in ab.3ut ?5ö of "he whee set of 2ÜC 

trials       Nou   Estes  did rof  use  ^rdividual   guessing quotients    but  only the^r 

S 



averages      Soi  in this equation,  a    is axso repia.ed by  its average,  rr   ;ts 

expectation IT.      Once this was done,,  it  is realiy easy  to obtain an explicit 

form for p    t 

P      .    •    V A    It, p ^t,   -   oJ 

Since 0 <■   X <   J.  now we have 

tun p 

Thus the probability matching effect s predicted even 'hough its 

prediction concerning the direction of change of guessinp, quotient is 

wrong 7S%  of the time. 

Parsimony in the number of necessary parameters is certainly a virtue 

in a good theory  But, according to an oriental belief, a virtue is 

something hard to obtain  So, I like to take a hard way , starting with a 

purely descriptive model which has as many parameters as possible to rake 

care of various information involved in 'rhe data  The number of parameters 

may then be reduced if one is xucky enough to find that some of the 

parameters are redundant 

I should say that this had been my belief before I got into the presen' 

problem  Then, I found out that I was toe optimistic  If 1 use a mode* 

wi'h too many parametersb I would simply be s'uck with 'he impossibility or 

parameter estimation,, and furthermore, there is no purely descriptive mode. 

A model becomes a theory once the model is applied to real da'a  Sc, *here 

is always a danger in using a single model for the purpose cf analysis of 

data, even if the model is primarily cnented toward e  description  Tha' 



much was t h e l e sson I ob ta ined from my f r u s t r a t i n g exper ience of t r i a l and 

e r r o r s and I am now ] u s t hcp i rg t h a t . a r r e r hea r ing my experience, , some of 

you could t e l i me i f t h e r e i s a b e t t e r s t r a t e g y 

Now l e t me get ba .k t o t h e d a t a . The t h r e e sequences- used in m> f i r s t 

experiment t h e r e s u l t s of which a re shown in Figures 1, it ard ? a re 

named " long run sequence , " medium run sequence' and "uneven p r o b a b i l i t y 

s e q u e n c e / ' The long run sequence i s c h a r a c t e r i z e d by r 'X ' - C 50 and 

a l s o by the c o n d i t i o n a l p r o b a b i l i t y Trx'*> s 70 X - "Blue' and 'Red")„ 

The medium run sequence i s c h a r a c t e r i z e d by nlX) - ObO and 

The t h i r d sequence i s c h a r a c t e r i z e d by n ' 8 ) "g ar,c* v ' * 

ITR(RI * o 2 5 

Now all the three sets of guessing curves shown in Figures 1{ 2 and 

3; have definite but different structures If I want t0 say anything more 

specific however I need a descriptive model* And at That stage of my 

research,, there was none, Even ^he most well formed descriptive modet of 

learning; the Bush Mosreller model 'Bush 6 Mosteller .1955), has too 

strong a set of assumptions to be applicable to these structures 

This much seemed to be obvious If a sequence of responses had a 

structure,, and if the structure was different for different event sequences, 

then the structure cf response sequences should somehow correspond to th» 

structure cf event sequences This hypothesis was easy *c check 

particularly as 1 had an impression thaf Ss were responding principa.-y 'c 

ruu length, Although "his could not be the only facto" responsible for 

the response structure I decided to emp cy a simple pij.ot mode^ which 

while it was very poor in its descriptive capacity ao-j ]i_st absurd as a 

theory; had ""he virtue of giving no Trouble m es* imaging ITS parameters 

ar,a couxd serve to test my hypothesis about rur. ̂ .ength„ 

10 
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New, my f : r s t p i l o t model may be c a l l e d no lca.lJU.ng nun. dependent 

tr\ode.l ITS b a s i c s e t of assumptions i s as f e l lows The length of run of 

the sane event which Ss have j u s t observed i s tne only f a c t o r t h a t 

determines t h e i r response p r o b a b i l i t y This run *eng*h dependent response 

p r c b a b i i i t y i s assumed constant throughout the course of the experiment-

That i s , t he re i s a b s o l u t e l y no l e a rn ing Let me give you an example ard 

d e f i n e the n o t a t i o n I am goi rg t o use Let the sequence of even t s be 

l i k e t m s 

run c i a s s 

i * 

2 

3 

OOOXXOOOOXOO - events 

123U56789012 " --trials 

1 2 3 ^ 

1 2 3 

? \ cycles within each 
\ run ciass 

1 ) 

Any VUJOJL or which S i s in the s t a t e of ]u s t having observed a run of 

length n i s s a id t o belong t o t h e IUA ZIOAS n„ A s e r i a l number i s 

a ' t a c h e a t o each t r i a l belonging re ""he same run r i a t s in the o rder of i t s 

appearance in the whole sequence , ard i s c a l l e d the cycle nuirbei of t he 

t r i a i wi*hin the run c l a s s . P^ 'n ' deno r es -he p r ;porMon of Ss (guess ing 

q u o t i e n t ) who p r e d i c t e d on t r i a l -c the aome event obtained on t n a - -t 

ard rt i n d i c a t e s tha t t r i a l i belongs t o run cxass n In gene ra l p ^ ' t ' 

i s used to denote t h e t h e o r e t i c a l p r e d i c t i o n f o r p^ 'n ! Now, whar the 

r c i e a r n i n g model amounts t o i s t h a t p n * c wnere C i s a cons-ant f o r 
-v K 

e a l n independent of t r i a l number 
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For 'he purpose cf t e s t i n g t h i s model I conducted t h e second 

e*pt r Tent an which t h e long run sequence and the medium ran sequenre are 

ex-end*d to 200 t r i a l s , and a s h o r t - r u n sequence c h a r a c t e r i z e d by 

*. x v C.Q a r,d * .25 i s added to then;. The r e s u l t s are showr. in 
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^ .r di-f - ens 
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DECAY MODEL I TIME DEPENDENT DECAY MODEL 

p 'rt p r o b a b i l i t y of p r e d i c t i n g the same event as occurred on the jus t 

preceding t r i a l This p r o b a b i l i t y depends upon which run c l a s s 

n the t r i a l < belongs t o , 

w i\ response weight f o r p r e d i c t i n g the same event as occurred on *:he 

just p receding t r i a l 

-espense we . j h t f o r p r e d i c t i n g the oppos i te event to t h e one 

occurred on the j u s t preceding t r i a l 



X a parameter( 0 < \ < * 

u a parame-er, 0 * u 

v a parameter, 0 * v 

o^U) • ? if -t belongs to run class n and the same event occurs on trial < 

• 0 otherwise 

8̂ (nj * 1 if 4. belongs to run class n and the opposite event occurs on 

trial i 

• 0 otherwise 

The following system of equations holds for each value of 

(1) pAn\ * u^lnl/ur (it) 

(2) ic (rtl » u (nl • v (nI 
<• 4. 4. 

(3) u- r
ln) * Au (n) • a fitly 

t ' l 4. 4. 

(•*) v . («) * Av in) • 3 {«) v 

As obvious from equations (1) through (**)t the trial-by-trial change 

in response tendency is not directly described in terms of p as it is in 

the Bush-Mosteller or Estes models but it is described in terms of 

response weights u and vr and response probability p is given by normalizing 

a with respect to the *otal weight to 

This type of model is often called a non linear model, but I would 

rather like to call it a quasi linear model, since it has many 

characteristics in common with linear models 

Now let me explain about -his Decay Model I characterized by Eqt 

through 1*0, TaVe a trial < for example The *rial may De preceded oy a 

run of length n so that it will belong to run class n Suppose that tl.e 

maximum run length appearing in the -otal event sequence is m Then the 

model assumes that at leas*- m pairs of response weights u and v 

potentially exist among which only such pair which "orrespends to 

• 20 

ulni and v(n), determines p^f the probability of predicting on trial 

the same event as occurred on trial 4.- * Now, suppose that the same 

event obtained again on the trial Then these »n pairs of response 

weights changes on the next trial in such a way that 

I ' AUCK 

C • AU(«I^ • u 

' kv{n)i 

u(it*M-A. • u(n) 
*.•' 4. 

That is, all the weights except 

and a'is) ordinarily increases This 

reflected in p(it) in such a way that 

u(rt) decrease by constant fraction 

change in response weights is 

I * PJM 
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p.  ,(n*/i   - p [n*}\ 

So,   all  the p(n)   except  one remain  unchanged on each trial       The  covert 

process of  constant  decay of response weightsv  however,   has  the  foli.owing 

effect       As the  interval between  two successive  cycles within the same run 

class  tends  longer,  the impact  of  additional  con^^ar.t   u  or v upon the 

resultant   weight becomes  greater,   and therefore    the  accompanying change 

m pin)   becomes also greater 

Now   let  me  give you  just  an  intuitive   interpretation of this model 

Suppose  that  S  is  classifying  information given by earh  observation of 

event  according to  the length  of  th3  just  preceding run.,     Suppose that 

a («1   and i/   In)   can be interpreted ai-  the subjectively evaluated amounts 

of evidences   respectively supporting the predictions  "same'1  and "opposite" 

corresponding to the category n       Then this model means  that S  is employing 

a strategy  for information book-keeping  such  that  *"he whole  stock of 

evidences  is  depreciated by a  constant   fra^icn   A  each  time  he proceeds one 

trial  forward       Obviously,   this  strategy  has  d  '.ertain sense   in view of 

adapt at ion 

I   did not  use all the data for  the purpose  of 'esting th)s  Decay  Model   I 

but  used the  first   50 trials of the   long run sequen-e  and  the  first  50 

trials  of the medium-run sequence       These  wore The  trials  on whi;:h the 

data of  the firs1"  experiment and the second experiment   could  be pooled 

Since this  Decay Model I was  another pilo*-  model     I  wanted   first   to try out 

the model with the most precise part  of  the data.     For the  same  reason  I  did 

rot   ure precise,  but  time  consuming,   method  for parameter estimation^ but 

23 



attempted to find plausible looking parameter values through trial ana 

error The result of the fitting is shown in Figure 11 The parameter 

values used here as follows 

X • 926. u r ( n ) * 10 0 ( f o r « - \ 2 and 3» 

- 5 0 ( w t m * 5 0}e u , i 21 ' 2 5 . - 7 5) 

u^(3) *30 (v , i3J * 7 0IP t * T• and'w • M 

(Those parameter va lues g iven in pa r en the se s are d e r i v e d from o t h e r s 

v • f i s chosen s i n c e we can chcose t h e u n i t of weigh* a r b i t r a r i l y ) Now, 

in Figure 11. h o r i z o n t a l broken l i n e s r e p r e s e n t co r re spond :ng n o - l e a r n i n g 

model p r e d i c t i o n s This n o - l e a r n i n g modei f i * uses s i x parameters and 

Decay Model I a l s o uses s i x independent parameters As yoa s e e , a 

c o n s i d e r a b l e improvement of da ta d e s c r i p t i o n has been made by moving from 

t h e f i r s t p i l o t model to t h e secord 

Having been encouraged by t h i s s u c c e s s r I t r i e d t o f i t t h i s model 

t o the remaining pa r t of t h e d a t a The r e s u l t was t ha t t h e f i t was by 

and l a r g e worse than in t h e no - l ea rn ing . . ncde l There may be two p o s s i b l e 

a l t e r n a t i v e i n t e r p r e t a t i o n s of t h i s r e s u l t . One i s t h a t t h e success of 

Decay Model I on t h e f i r s t 50 t r i a l s i s ar a r t i f a c t , a rd -he o - h e r i s 

t h a t seme charge i n S s response s t r u c t u r e t a k e s p lace at abo„* 50tn t r i a l 

I am now i n c l i n e d t o b e l i e v e the second p o s s i b i l i t y f o r a couple of reasons* 

but I w i l l not go i n t o t h a t i s s u e now 

Because of t h i s p a r t i a l s u c c e s s of the time dependent decay mode*, I 

wanted t o t r y ano the r type of decay model which may be c a - l e d "Cycle 

dependant VeCAtj Hcdel " o r simply Decay Model 11 The model i s ny t h i r d 

p i l o t oodei and i t s fo rmal d e s c r i p t i o n i s as f o l l o w s 

2u ~ 

DECAY MODEL I I CYCLE-DEPENDENT DECAY MODEL 

In the Decay Model I I , t he meaning of s u b s c r i p t -c of v a r i a b l e s i s so 

changed t h a t i t now i n d i c a t e s t h e cyc le number of t h e run c l a s s n i n s t e a d 

of s e r i a l t r i a l nuraoer as i t i s in Decay Model I . 

X a parameter, 0 < A 

e a parameter, -T < c < 1 

a^(n) • 1 if the same event as that on the just preceding trial occurs on 

cycle i. of run class n 

* 0 otherwise 

8^<n} * * if the opposite event to that on the just preceding trial occurs 

on cycle A. of run class n„ 

« 0 otherwise 

The following system of equations holds for each value of 

(5) • u^UI/ttMn) 

(6) MT(K) * u^(n) • v̂ (rt) 

( 7) * ('•e)o^(n) 

Now. the major difference of this new decay model from the first one 

is "hat response weights do not decay on each trial, but decay only on each 

cycle belonging to the sane run class Then this is certainly a simpler 

model than the first, Another difference is a minor modification of 

notation 
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Fig.   13    Exact  fit of  ''-cay  Model  II  to P*  *or n  •   ',     n»diuiTi-run sequence. 
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Fig.   16    Exact  fit of Decay Model  II   to  7V for  » .   / (continued)  and ?, 
short-run sequence. 
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y »  ^ ♦ c and v «   I    e 

Before entering .into The application of this model j I should mention 

another type of analysis I did„    All the mathematical models so far applied 

to guess process including my own assume that response probabilities are 

affected only hy physical events and not by Ssv  own responses„    But  it is 

psychologists    commcr sense that responses are affected by previous 

responses too,,    The ex;stence of this effect  in guess processes was first 

demonstrated by HaVe and Hyman (1953)0 

As a matter of fact    the effect of success and failure on preceding 

trials upon the response found in my data is really complicated«    The nature 

and arnount of effect differs from sequence to sequence and from run class 

to run class.    Furthermore    the effect does not disappear even at the end 

cf 200 rrials,    And a trouble with linear and quasi linear models is that 

they are very ng^d about their probability matching property and their 

descriptive capacv'y tends to be poorer and poorer as trial proceeds,     So 

after finding ^bi.- effect,, I was again forced to -ise partial data,     I 

recalculated guessing quotients on each trial  for only those Ss whose 

prediction on the jus*  preceding trial was success,, and denoted them 

as P*      Analcgou&ly ,  1 calculated P for those Ss who failed on the just 

preceding trial.    These  P* and P   are piotted  in Figures 12 through 16 for 

the three sequences  and "he corresponding run classes 1 and 2o     And I 

applied the Decay Model  II only to P',,  since by and large P* is more 

reliable than P 0   ' I am making full use of the excuse that  I am dealing 

wi*-h pilot models,/    The results of the fit of Decay Model II to P*    are also 
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plotted in the same figures.     The parameter values used are as follows 

\ ' 0 942c Wjd)  « 5, MjiZ)   » 0, a?(')  - 25 and e  * 0    [u^Z]    is 

automatically 0 since W. (21   • Ö i      Here e  *  0 actually means that I gave 

up using tp and therefore j  that e is dropped from the model.     So, the real 

number of parameters I used to fit the model to the partial data used 

if four,.    Taking into account this small number of parameters used I  could 

say that the fit of the model to the data is moderately goodj although the 

fit to the first 50 trials is worse than that of Decay Model I, 

Anyway, I think I have definitely demonstrated one thing through the 

applications of these pilot models, guessing processes are by no means 

simple,.    The apparent simplicity of averaged guessing curves  is a complete 

deception.     Meanwhile, I still have a hope that someday I will be abie to 

solve this mysterious case. 

Nows  let me shift to my second theme of the present taxk      So far 

it has been a detective story.    From row on,  it will be a speech on police 

science.    That is.  I want to talk about the parameter estimation of 

Decay Model 11, 

1 think the most valuable information I obtained through the course 

of parameter estimation are not the final outcomes of the parameter 

estimation but the things I   learned through »he course or estimation       In 

books on statistics we find how optimal procedures of parameter estimation 

are to be carried out.  e  g, ,  how one can use the maximum likelihood method 

or the method of leas*- square      But I can find nowhere what  a^re the next 

bests when the bests are not practicable      In Bush  and Moste.-ers b.:oV:,   thf 

authors point out that these test me-» hods  can be  applied to linear mode, s 

only  in very special cases,,     If they are  ^mprart icable  tor linear models, 

how much worse  for quasi  linear models      So what   1  have dote  first  was to 
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learn how ma'hemati :al psyche..ogists e5*imare their parameters     What I 

disccered was  awful,     I   Tentatively ramed one cf  the most  popular methods 

♦hey  used "the method cf sample  sum."  which may be described as follows 

For *h€   sa^e  of simplirity    let  us consider a single parameter model 

for a psychological process      The model gives  a sequence of functions 

^.(fll-   (i-'©',-        -   (T ' 31 where A. is -be trial number and 6 is the 

parameter      On  the other hand    rhere  is  a sequence   cf  data values X,,-   X^i  <"> 

»       .       Since nobody can hope +nat  +he model completely fits the data^ we 

should expect  a  deviation between  model  and the data on each trial-     Let me 

denote the deviation 6   .   and ca.l  it the error on trial <      Then we have a 

system of equators, 

\       (ije'   -   6^(61   i-   ',,  2 

Now if we sum each side  of the equations    over all   the  trial number,  we 

obtain 

: \ i v1 ■ l \U) 

If we estimate  6 b>  putting *he righ*   hard side   if this equation zero, we 

have  th«? method of simple  sum      Now,   what "his method of simple sum really 

amounts  to is  to md^e to'.al  positive errors and total negative errors be 

balanced      And seme fxampies  mil  easily show you how wrong a conclusion 

one might  be   ied to under  certain rather common  circumstances      Take,  for 

example    such  a single parameter model   as 
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For various values of 6, we obtain a family of theoretical curves as shown 

in Figure 17c    Now suppose that we obtained data which, although increasing 

monotonically, has  an asymptote  less then  1.     Then the absurd result we 

obtain is that, the more the number of trials the experimenter runs the 

less the estimated 6 obtained by the method of simple sum as illustrated in 

Figure 18.,    One may easily find this kind of absurd theoretical  curve in 

psychological Journals,    A more dramatic but more artificial example will 

be given as follows: 

Consider the  following model. 

in{9] ' 1 - e"'16' n •  lf  2, ..., m 

- e"(n"m,e
i n . m*», mt,  ...,  2m 

Consider an extreme case such that the obtained data exactly follow 

the model: 

. e'|R'W,90    n • m*\   , 2m 

Any reasonable parameter estimation procedure should give 9 » 6^ 

where 6 is the estimated 6.  But the method of simple sum can give no 

estimate of 0, since any value of 6 satisfies the equation I 6 (9) - 0 

Suppose now that we had one more value or trial 2m*' which is not eqaai to 
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£ 0 but  equa/  ro e ,  where 6^ <   6'        The; \ht method of s-.-np-e 

■ua g>vp-:  thft estimate  b  ^  6        That   :sv *he est)mate  is determined  ]ust b> 

a sit.g t  irregular value,,    One may wonder who would v.se such an oh/iously 

absurd nethodo    ""he fa:'   is that  th:s is one of the most  popular parameter 

CETima*;cn mffhods whpr  the best  methede. are  impra': icabie. 

This method cf S'-mpte  ton appears   imder various disguises when the 

rumter of paramr^rs  is mor^   'hen  -"e      Whether it   is used or not  can easily 

be checked,  however    by   ^ee^ng if  "he equation used KO estimate a parameter 

;s equiva ent  to putting unweighted sum cf errors equa. to 0 

New    if^er making this awfui discovery,   I attempted tc obtain a set 

of   enrena for "he admiss ibiii'y  of subcpt.mai  iiiethods of parameters 

•stimation,     To do +hiS.   I chose  t-he method of  leaat  square as the ideai , 

♦he  closer ^o \t is the bet'er    since the maMirr.um likelihood method is 

usually  further away in its pra^ti-ahiuty., 

^s yci' know    'he mp*hod of   leas*  square minimizes  ehe sum of square 

deviaMcns       Therefcrt;   in our notation    the parameter estimation equation 

is expressed  at 

de    ~    \     K'''       Q 

w 

Let  me     a'.j.   4      'e1   {     (9 ♦he t-tio* iJtmc^Auri    of  "he method of   least  square 

I"   Feemt "c  fr.e   •hrj-   mos*  methods  of pararr.e*e:  es*ima*.,cr. have "-heir 

S"1 



characteristic error functions of The fcmi 

w>.(9)  6  (e) 
4. 4, 

and the estimation of parameter 6  is made by  putting *he  fuprtion rqua.i   TO 

zero,.     And I  think th* inherent  nature of a method of par-imcer estimation 

is best  demonstrated by the sequence  of weights W.{e)„       Fcr the method of 

least square, W.|9)  ■ -rr ($  f6lr    and for the method of simple sum, M> (el 

for all i. 

Nowr  from the nature of the  least square method error function,  I 

derived two criteria for the adnussibili^y of suboptimal methods      The 

first one  corresponds to the absolute value of (J  "(6);     The absolute value 

of weight  of an admissible methcd should be great for su:h < where the 

prediction  (J-(9)   is relatively sensitive to the variation  of  6, and 

it should be small where  (JU1;   is relatively insensitive      New you see 

that the absurdity of the method of  simple sum demonstrated by my   first 

example  is due  to its failure to comply with this criterion 

The next  criterion for the  admissibility is  concerned with the sign 

of  iJ-MQl;  the sigr of admiss^tle weight w) 'o1   chouJd be  different when 

^.'(61   is positive and when  fa     (ö*   xs rega^ive^     If a method satisfies 

this  criterion,-  *he kind of absurdity  I bive shewn  in tnt  second example 

could never happen,, 

With »hese "•wc criteria-  I  a*temp*od TO cbTö:n admissible method fcr 

estimating paramtters of my Decay   Mciel II.,     J  picked up   \ for the 

parameter to be estimated first,  iince p ' A , u;      u      t '   becomes  d-mest 

independent  of all the parameterc- c*her than  Ä  for  large -v.     Then 

immediately  I   found a difficulty,     There was no p.racticable and adnuAb\biz. 
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method tor es*:i>a' ir.g  •>      The only practicable methcd I found may be called 

the mzXkod 0(5 6\mfii  Vlti.O. You see  I  ha e  everything ■'■hat  is simplec) 

This rr.e;hod   is a.mcs'   is popular as the methcd of simple sum^ and is 

slighxly better than    he  ia'ter since the former satisfies the second 

criterxor,,,    Bu*   ; t  do*1* ret  satisfy the  first  cntenor of admissibility 

Le- me bnei.y describe »his method sine«   I  was bound to use it« 

Error   5    j& defined äs before 

6 v        p 

According to The definition of Decay Model II, 

r-t* ' 4.*!     4.*' < < 4. 

Define    c\mplA MLtco k    in  such a way  as 

K   ''   o^)n'  p.'   "   v. • ^i1'''-v dJ 

:' 

) 
if    a    •   J 

4, 

if    a    '   0 
4, 

NDW    by  sobstituting p    and p    ,    in the  definition of fe    ty  th^  above 

express.cn ot p    ,   and  'he andi.cgcus p>cpre^äior  of  p     we obtain 

.rrcspective of »ne vaue of    c 
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Now  from the definitions of Decay  Model II we can easny derive 

w. . x*-*1 1^ ♦ II     ft/il ~ X] • 1/{1 - x] * 0 ix1'1) 

So, by substituting this into fe  ^    we obtain 

fe   « x ♦ OAx*] 
4, 

"o, by assuming fe.  »   X    for large -C, we obtain 

(I   -   X. + Il    -   XII   -   XJ   -   -    6^,   *   A6^        if     o^        I. 

^♦1    '   U^  B   6^l   •    A6^ if     \  '  0 

We obtain either one of the two types of equations  for each large x.    so 

that by taking sum of each side of these equations  across  large -c and 

putting the right hand side    which is the error function of this method, 

equal to zero, we can estimate    X, 

Now,   let us take a look  at  the error function of this method.     From 

the above equations you can easily see tha1"  the weights of the error function 

have  the  following form 

M.  *   t   [1       A).       if    a    i  • a 

t (/ ♦ xi,     if   Vl f ^ 

U0 



So each weigh-   can take  only one of the TWO   -a*ues,  and the difference 

between these two values  is great  since  -he estimated  A  is  fairly close to 

To    So in estimating A,  what this method  is  actua'.x>  doing xs taking into 

account only those  data on the trials whero the theoretical curve  inflects.. 

Ard the worst  aspect of this  is thar  those   dtc  tbe trials where,   by and 

large, p    :s most   .insensitive to the variations of    A., 

Anyway    this  is what T have done  for estimating  K,  and the estimated 

KS are fairly  similar for u and v    for different sequences and  for 

different  run classes      However,   a sligh'.   increasing tendency with trial is 

observed    in the estimated va.'ue of \o 

Once  A is estimated,  the nest problem is the simultaneous estimation 

of the remaining thrte parameters,  u      u?    and t.    But since this  appeared 

Tc me technically  impossible,   I first dropped t from the model by   assuming 

t    » Ö        Then i*  is possible,  at   least  in principle, to estimate u)   and itf. 

simultaneously,   since  they can be separated by utilizing k    again this time 

for small  values of >t,     From now on,   I wixi net go into technical details, 

except  a few points of major interest., 

By utilizing k    and again applying ♦•he  method of simple ratio,  we 

cbtair  an equation  for estimating W      of which the error  function  is 

chara-.tenzed by weights of the following form 

u)    • i  |l  t  X) (I  ♦  X       2 -c^L, 

where 

7      ('       K'w 
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Now the point here is that this time we can   improve this method to 

some extent by taking a look at the error function of the Leas:   square 

method«    That  is.  even though the lest  square mthod rtse^f  is nor 

applicable,, we can modify the error function of a subcptxma.. method so 

as  to be.ir more  resemblance to the error function of rhe  Least   square 

method,.    As a result of this kind cf modification,, we- obtain 

and you see the    6    s on  initial triads  are  more  heavily weighted than 

before,. 

Now suppose that  I obtained an estimate of a,   by this method,   although 

this  is actii&lly a false statement,     Then the only  remaining parameter a 

can be estimated,  for the first time,, directly by the meshed of least. 

square. 

However,   since  ^'he modified method of  simple  ratio didn  t werk..   I 

dropped u    too,  from the model by assuming  i+ equal to u; .'2  for run class 1 

and attempted to obtain the   least square estimate of w, by suc:essive 

approximation      Tne method  is very simple,-     The   reason why "he  least   square 

method is usually impracticable is that  *"he weight cf the errcr function, 

5  "   |0)n   is usually a fairly comp,.irared function of 6,    But     f wt   r^p^ace 

this unknown 0 in  |J       (6)   by its arbitrary estimate  6*r   'hen the 

estimation equation 

rf/   le*)  6.(9)  - 0 
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is often solvable,    Then,   if the estimate 6    cbtamed by solving    his 

approximate equation is considerably different from d*,  you wil. replace 

9* by 6,     and repeat the same procedure,-  al" hough  I think repeti*ior i& 

usually unnecessary since it is easy to get a fairly good estimate 0*    to 

start  cut just by a trial and error calculation, 

Anyway,  this method again failed in my case.     Any by  row  •••he roäscn 

for all the fai.ures  is ciear      The  guessing quotients on  the  first  coup.e 

of cycles are  completely beyond the descriptive framework cf Decay  Mc-ei   II 

(For  a probable  reason,- see Toda,,   1962.)    And since ail  ^ose  :mprc *^ 

estimation methods give heavy weights Xv. those  initial trials  where rhe 

theoretical values are most  sensitive  to the variation of M; ,,   it   :s no 

wonder that   I ended up with utterly incomprehensible estimates  cf u; 

Anyway,   these  failures  led me  to an entirely new  line  of apprcavh    I 

attempted to use  the method of minimum absolute error    that   is     ^c MtiMtt 

parameters by minimizing the sum of absolute errors    and  it  *umed ou: 

that  tms method is very useful.     At  any  rate,   ♦he method of minimum 

absolute error should at least be as gocd as the method of  ".east  square? 

and furthermore.,  it  has a very nice property of dirregard-rg excepticuax 

da*a values      But   th;s does not  mean that  this tretb:d innocently gives  LS 

estimated values  no matter how exceptional values may exist   la  the data« 

On the contrary    it  gives i-s precise  information r'nrough  »be  course  or 

estimation about  which values are  excep-ional  and in what   way  the>   are 

exceptional.     Unfortunately,   I have nc  time  to go into details cf this 

method.     But   I  am convinced that   this  relatively  unknown method  is worth 

more attention by the us^rs    of stochastic models, 
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